

Telemetry

3.3

HWCI 3.3.1.1 TDRSS Transponder

- Requirements Traceability
 - DTRD sections 3.3.1.1, 3.3.2.1
- **Trade Studies**
 - Space qualified transponders
 - Balloon qualified transponders
- **HWCI Description**
 - New procurement by NSBF for balloon-class transponder for LDB and ULDB use
 - Awarded to Motorola 10/98
 - Functionally equivalent to Motorola fourth generation space qualified transponder
 - Supports MA and SSA modes of operation

David Stuchlik November 4-5, 1998

3.3 Telemetry

HWCI 3.3.1.1 TDRSS Transponder

- HWCI Description (cont.)
 - 1553 interface for transponder monitor and control Risk Assessment & Mitigation/Reliability
 - Previous Flight History
 - COTS
 - Command rate 125 bps, Return Link rates up to 150 kbps supported
 - RF output power 5 watts
 - Input power 6.5 watts receive, 32 watts transmit
 - Operating temperature range -10 to 55 C

3.3 Telemetry

HWCI 3.3.1.1 TDRSS Transponder

- Risk Mitigation/Reliability
 - Based on fourth generation space qualified units
 - First generation balloon-class transponders available
 - Available units as option on fourth generation space qualified contract
 - Can "plug and play"
 - One of two global communication systems flown capable of supporting mission operations data and command
 - Science data recorded on-board

3.3 Telemetry

David Stuchlik Code 820 November 4-5, 1998

HWCI 3.3.1.2 TDRSS Low Gain Antenna

- Requirements Traceability
 - DTRD sections 3.3.1.2, 3.3.1.3, 3.3.2
- Trade Studies
 - in-house fabrication
 - commercial supplier
- Functional and Performance Requirements
 - Provide maximum VSWR of 1.5:1
 - Provide omni-directional gain pattern in azimuth
 - Provide 0 dB gain +5, -1 dB at elevation angles from -6 to +80 degrees
 - Provide greater than -5 dB gain at elevation angles from 80 to 90 degrees
 - Maintain functionality and structural integrity in exposed ULDB flight environment for mission duration

3.3 Telemetry

HWCI 3.3.1.2 TDRSS Low Gain Antenna

- HWCI Description
 - Quadrifilar helix antenna designed and constructed by Code 567
 - LHCP
 - < 1 lb.
 - 1 foot height, 5 inch diameter cylindrical radome
 - Replication of design successfully flown on LDB
- Risk Assessment & Mitigation/Reliability
 - Successfully flown on LDB
 - Backup to TDRSS pointed antenna
 - Supports one of two global communication systems

3.3 Telemetry

David Stuchlik Code 820 November 4-5, 1998

HWCI 3.3.1.6 TDRSS Data Interface

- Requirements Traceability
 - DTRD Section 3.3.1.1
- Trade Studies
 - In-house build or contractor
- Functional and Performance Requirements
 - The board shall provide two serial data streams compatible with the I and Q inputs on the TDRSS transponder
 - The serial data streams shall conform to the TDRSS users guide requirements
 - The board shall support multiple bit rates
 - The board shall support "combined I and Q" mode
 - The board shall interface to the PC104 bus for data transfer from the flight processors

3.3 Telemetry

HWCI 3.3.1.6 TDRSS Data Interface

- HWCI Description
 - PC104 custom card designed and fabrication by WFF
 - 64K x 8 bit deep FIFO (IDT 7208)
 - half full flag used to interrupt flight processor
 - Designed to support up to 150 kbps
- Risk Assessment & Mitigation/Reliability
 - Redundant subsystem
 - Each flight processor has interface board
 - Graceful degradation
 - Each board has independent I&Q circuitry, can operate with only one functional

3.3 Telemetry

HWCI 3.3.2.1 & 3.3.2.2 INMARSAT transceiver and antenna

- Requirements Traceability
 - DTRD section 3.3.1.3, 3.3.2.2
- Trade Studies
 - Commercial, Military and Government communications satellites
 - Inmarsat only mature commercial bi-directional global data communications system
- Functional and Performance Requirements
 - The subsystem shall transmit data and receive commands via the INMARSAT network
 - The subsystem shall meet or exceed all INMARSAT specifications for the Inmarsat-C Network

3.3 Telemetry

David Stuchlik Code 820 November 4-5, 1998

HWCI 3.3.2.1 & 3.3.2.2 INMARSAT transceiver and antenna

HWCI Description

- Inmarsat support four "ocean regions" of coverage
- Terminal transmit in 1626.5 to 1646.5 MHz band
- Terminal receives in 1530 to 1545 band
- Data rate is 600 bps
- Transmission are message based 32kB maximum
- Input power 80 w during transmit, 9.5 w during receive
- Terminal operating temperature range -25 C to 55 C
- Antenna operating temperature range -35 C to 55 C
- EIRP 14 dBW +/- 2 dB at 5 degrees elevation

Risk Assessment & Mitigation/Reliability

- Subsystem is backup global communications system
- Same model hardware successfully flown on LDB Balloon flights from Antarctica and Alaska

3.3 Telemetry

HWCI 3.3.6.1 & 3.3.6.2 Iridium - Orbcomm transceivers/antennas

- Requirements Traceability
 - DTRD section 3.3.1.3, 3.3.2.2
- Trade Studies
 - Commercial, Military and Government communications satellites
 - Iridium and Orbcomm only (other than Inmarsat)
 commercial bi-directional global data communication
 systems nearly deployed
- Functional and Performance Requirements
 - The subsystem shall support global uplink and downlink through commercial communications provider
 - The subsystem shall support data and command interfaces to the flight processors

3.3 Telemetry

David Stuchlik Code 820 November 4-5, 1998

HWCI 3.3.6.1 & 3.3.6.2 Iridium - Orbcomm transceivers/antennas

- Iridium Description
 - 66 Satellite constellation complete
 - Commercial voice service delayed from 9/23/98 to 11/1/98
 - Commercial data service delayed to "mid 1999"
 - 2400 bps at L band
 - Handheld voice transceivers with data connection available now - not viable
 - Modified Motorola transceiver under development by NAL Research Corporation
 - Information is currently Proprietary
 - NAL working with Motorola and Iridium

3.3 Telemetry

HWCI 3.3.6.1 & 3.3.6.2 Iridium - Orbcomm transceivers/antennas

Orbcomm Description

- 16 operating satellites currently, 9 more by end of year
- Commercial data service available now
- 2400 bps at L band
- "Globalgram mode" with 200 byte message would meet mission operations requirements
- FCC approval for airborne application needed
- Data latency high due to lack of ground stations
- Magellan GSC-100, Panasonic KX-G7001 and
 Scientific Atlanta evaluated for ULDB application
- Panasonic model selected for further development

3.3 Telemetry

HWCI 3.3.6.1 & 3.3.6.2 Iridium - Orbcomm transceivers/antennas

- Orbcomm Transceiver
- Panasonic KX-G7001
 - 1.3 kg, 7.3 x 5.9 x 2.4 inches
 - integrated GPS optional
 - serial RS-232C communications port
 - 2400 bps return link, 4800 bps forward link
 - 148 to 150 MHz return link, 137 to 138 MHz forward link
 - Input power 2.4 w receive, 36 w transmit with half-wave whip antenna
 - Operating Temperature range -40 to 75 C